S

receeee| |

At Exascale,
Will Bandwidth Be Free?

Samuel Williams

Lawrence Berkeley National Laboratory
SWWilliams@]Ibl.gov

e _ AWRENCE BERKELEY NATIONAL LABORATORY =—n

S

o) f Background...

< Exascale machines will provide orders of magnitude greater
potential performance and memory capacity.

» We will use those machines for new science / analysis capabilities
and not simply to run larger problems with finer grids.

¢ Thus we cannot rely on having larger local working sets to
amortize other artifacts of system performance.

<+ We must be focused on the impact of exascale on important
applications and not certain benchmarks

eeeeeeeeseessssss _ AWRENCE BERKELEY NATIONAL LABORATORY i

S

— _ :
==} Overarching questions...

< Given there are 100M-1B lines of legacy code, we need to know
how well today’s apps (as written today) will run at exascale?
(need a pre-silicon answer)

< When codes are predicted to perform poorly (less than the exaflop
expectorations), what constrained their performance (software,
architecture, algorithm)

<+ How can these performance deficiencies be fixed?
= new compilation techniques
= programming models
= algorithms
= architectural research

4

» If it is addressed, what is the ultimate performance potential.

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t

S

/\| b Today, Flop’s are Free

» Over the last few decades, improvements in peak flop/s have
quickly outstripped improvements in peak bandwidth.

» Today, it is >50x more expensive to move a word from DRAM than
to perform a floating-point operation on it.

< The kernels in most real applications exhibit such limited data
locality that there is O(1) words of data movement per floating-point
operation.

» With data movement now the primary bottleneck to performance,
some quip that “flops are free”

» This paradigm is not invalidated just because one can find or
construct a benchmark with sufficient locality to be compute-bound
(linpack).

LAWRENCE BERKELEY NATIONAL LABORATORY 4

S

What about at Exascale?

< The lack of locality will persist (flops are still free)

/

<+ However, a new set of challenges may emerge...

» synchronization across thousands of cores (this overhead is required for
OpenMP and CUDA threading constructs)

» insufficient parallelism (expressed or inherent) in kernels

= complex data movement interactions on both inter-core and inter-node
networks

/7

< If these displace data movement as the preeminent bottleneck, then
in general, data movement (bandwidth) may seem free !

» Today, flop/s are over provisioned given the lack of locality in real apps

= At Exascale, Bandwidth may be over provisioned due to a lack of
parallelism in real applications.

» This rule of thumb for exascale wouldn’t be invalidated just because one

can find or construct (e.g. STREAM) a benchmark for which bandwidth
or flop/s is the bottleneck.

LAWRENCE BERKELEY NATIONAL LABORATORY

Overhead of Synchronization

(Coarse vs. Fine-grained Parallelism)

LAWRENCE BERKELEY NATIONAL LABORATORY G

S

Overheads for Threading

OpenMP-threaded applications are in effect bulk synchronous...
= ...sequential code...
= ...OpenMP region (with implied barrier at end)...
= ...sequential code...

MP| communication can similarly act as a synchronization point.

This overhead for synchronization sets limits on the application of
fine-grained parallelism.

We can model the execution of a loop nest as some function of...

= computation (flop’s)

= data movement

= synchronization overhead (e.g. OpenMP overheads)
When the cost data movement is high, it seems like “flops are free”,
but when the cost of synchronization is high, it will seem like
data movement is free...

LAWRENCE BERKELEY NATIONAL LABORATORY =—min

. = /\ u
:% Overheads for Threading

< Consider a nondescript application 8.E+12

where threading is applied in bulk
to units of work (e.g. matrices,

vectors, boxes...)

» Each unit requires a threading
construct to start, run, synchronize,
and terminate. (e.g. omp parallel
region or CUDA kernel)

-@-512MB
“+64MB
--8MB
8.E+11 —#1MB

>

L)

D)

8.E+10

Effective Bandwidth

e

< Assuming data movement would
nominally dominate, we can easily
model the effective bandwidth as a
function of...
» the processor’s pin bandwidth
= the size of the unit of work

» fixed 10us overhead (no worse
when we have 100x more cores)

8.E+09
8.E+09 3,E+10 8.E+11 3.E+12

Qin Bandwidth

LAWRENCE BERKELEY NATIONAL LABORATORY 8

S

Overheads for Threading

% ...viewed as a fraction of the pin 100.0% %%T
(peak) bandwidth...
< For today’s architectures (left) itis ¢
easy to get near peak bandwidth. '§
< At exascale, the usual approach to %
threading computation on objects g 10.0%
less than 8MB (e.g. an 643 grid), S -51VB
will never achieve better than o --8\VB
10% of peak bandwidth !! = —4-64MB |
< In fact, threading coarse 512MB ~®-512MB |
objects only attains 87% of pin 1.0%
bandwidth. 8.E+09 8.E+10 8.E+11 8.E+12

Pin Bandwidth

< Similar conditions arise on compute-limited kernels...

< To attain 90% of peak (10TF), each processor needs to perform
approximately 100 million floating-point operations between synchronization
points.

e _AWRENCE BERKELEY NATIONAL LABORATORY =t

S

Overheads for Threading

% We can also visualize the time 1.E+00
' rform the loop nest. "o512MB
required to pe P | E01 g
< For applications that apply coarse- \.\‘\‘ --8\IB
grained parallelism (purple) any 1 E-02 =1MB M

additional bandwidth is beneficial

< Applications that attempt fine-
grained parallelization can not
exploit more than 1TB/s of
bandwidth if overheads remain
around 10us.

Run Time

I

)

1.E-04

1.E-05

1.E-06
8.E+09 8.E+10 8.E+11 8.E+12

Pin Bandwidth

e _AWRENCE BERKELEY NATIONAL LABORATORY =t

S

/)
0‘0

Overheads for Threading

(summary of issues)

If we were to simply compile and run an existing application on a
exascale processor, we may see minimal increases in performance
and may only attain 10% of peak bandwidth (and a smaller
fraction of peak flop/s).

Clearly, it is imperative we have tools today that ...

= precisely identify where application of TLP is inefficient so that the
codes can be fixed before the machine is on the floor (pre-silicon).

= identify what the synchronization minimizing implementation is.
Vendors may use this information to drive their design point. i.e.

= can they get by with 10us overheads at 10K cores?

= or do they need sub microsecond overheads for global synchronization?

From a CS research perspective, knowing how critical this issue is,
allows us to quantify the importance of alternate execution and

threading models.

LAWRENCE BERKELEY NATIONAL LABORATORY 1

Insufficient Parallelism ?

LAWRENCE BERKELEY NATIONAL LABORATORY =i

S

| A - - 1
rececs) | Insufficient Parallelism in code

\/
0’0

\/
0’0

\/
0‘0

Thus far, we have assumed our effective bandwidth is simply peak
bandwidth amortized by overhead/synchronization time

Unfortunately, kernels as written today often attempt to apply a
simple #pragma omp parallel for constructto various loops
or iteration spaces.

» |n the multicore era with 4-8 cores, even short (64-iteration) outer loops
can be efficiently parallelized in this manner.

= As the number of threads increases, load balancing will emerge (64
iterations on 14 SM'’s or 57 cores).

= Ultimately, some cores may not receive any loop iterations (128
iterations on 10K cores).

What’s the effect of under parallelizing a kernel?
» The effect of insufficient parallelism on peak flop/s is obvious.

» The effect on peak bandwidth can be subtle --- Specifically, how many
threads are needed to fully saturate the memory subsystem ?

LAWRENCE BERKELEY NATIONAL LABORATORY 13

S

| A - - 1
=« | |nsufficient Parallelism in code

<+ We can model Little’'s Law = Little's Law for CPU Bandwidth...
omnipresent concurrency P N A

needed to fully utilize the /./

memory bandwidth.
/

< On today’s CPU architectures,
OOO+HW prefetchers can i
inject sufficient concurrency per
thread to hit peak BW with a T 2 3 4 5 & 7 8
subset of the cores. Threads

(o)}
o

A O
o O

>

N
o

Bandwidth (GB/s)
w
o

RN
o

o

e _AWRENCE BERKELEY NATIONAL LABORATORY =—n

S

| A - - 1
=« | |nsufficient Parallelism in code

» We can model Little’s Law = Little's Law for Exascale...
omnipresent concurrency 4.000
needed to fully utilize the 0.400
memory bandwidth.

< On today’s CPU architectures, 0049 .ﬂl"

OOO+HW prefetchers can 0.004

inject sufficient concurrency per 0.000 -

thread to hit peak BW with a oy 10 100 1000 10000
subset of the cores. Threads

Bandwidth (TB/s)

» However on exascale architectures, where power-hungry OOO and
prefetchers have been eliminated in favor of multithreading, we need
10s of thousands of threads to get peak bandwidth.

< Today, many applications may only express 64- to 128-way TLP. If
run at exascale, they may only attain 1% of peak bandwidth !!

< Needing all the threads always running for max BW may cast doubt
on powering down cores to save energy when BW limited.
—— _AWRENCE BERKELEY NATIONAL LABORATORY =—i

recer) .ﬁ‘ Insufficient Parallelism in code

(summary of issues)

< Need tools (or info from vendors) that...

= quantify the relationship between TLP and effective bandwidth.
(today, we simply run benchmarks like stream)

= highlight how a processor responds to increasing the number of
streams per thread (today, on BGQ, having too many threads can
cause contention in the prefetchers can impede net bandwidth)

= precisely identify regions of applications that are under
parallelized and quantify the penalty.

= provide a high-water mark for parallelism. When algorithmic high-
water mark is less than the demands of the processor, significant
algorithmic rework is mandated.

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t

Do we have to worry about
NoC Topologies as well ?

LAWRENCE BERKELEY NATIONAL LABORATORY =—iin

S

<) On-Chip Network (NoC)...

» When we had simple on-chip networks (e.qg.
star or crossbars), performance was readily
understood and could be easily modeled.

» unfortunately, programmers (let alone
software or runtimes) lack intuition for even
simple topologies likes rings and meshes.

< how differently do applications perform on
these two NoC topologies?

» When scaled to 1000’s of cores, modeling
and simulation tools will be essential in
predicting and understanding performance.

s _ AWRENCE BERKELEY NATIONAL LABORATORY =t

S

On-Chip Network (NoC)...

< Unfortunately, with scalable yet complex NoC topologies...
= memory bandwidth and latencies may vary from core to core.
» requisite concurrency will vary from core to core (overprovision?)
< Moreover, highly-optimized applications will perform complex, on-
chip inter-thread data exchanges avoid DRAM bottlenecks.

= This creates a complex interaction between NoC topology and the
communication pattern

= programmers are ill-equipped to quantify these effects (intuition fails)

>

We cannot assume core injection bandwidth is the bottleneck
anymore than we can assume DRAM bandwidth is the bottleneck.

< The NoC may be the bottleneck for real applications.

0

‘0

e _ AWRENCE BERKELEY NATIONAL LABORATORY st

On-Chip Network (NoC)

... summary of issues

<+ We must be focused on real application drivers and not contrived
benchmarks that highlight a particular NoC topology...

% We tools that ...

determine if streaming DRAM bandwidth is sensitive to NoC
topology in the presence of 10’s of thousands of threads/requests.

can identify which real codes / kernels are sensitive to on-node
(inter-thread) synchronization and data exchanges.

can quantify the performance of complex data exchanges for various
NoC topologies and parameters expected in exascale machines.

how placement of threads (or variability in the placement of threads)
effects performance or latency.

Does variability demand new approaches to load balancing?
Would novel NoC topologies/functionality enable new algorithms?

< Static analysis may address some of these, but increasingly
component simulation or processor emulation are required

LAWRENCE BERKELEY NATIONAL LABORATORY 20

Algorithms and
Distributed Memory

LAWRENCE BERKELEY NATIONAL LABORATORY =—mtid

Algorithmic Effects and MPI

(Global Interconnect)

< Many algorithms have >O(N) computational complexity
<+ At exascale...

» although we may have 100x more total (NVRAM) memory per node,
exascale is not about finer meshes. It is about enabling new science.

= We may run lots of similarly sized “solves” per node as today on
1-10x more nodes than today (perhaps 10x bigger overall).

= Larger problems may require more iterations, but message size may not
increase significantly.

<+ We need to run scaling experiments to understand the
algorithmic effects that increase time-to-solution.
<+ We need network models and simulators that allow us to
understand the performance challenges of real applications
» P2P communication on smallish messages
= limited injection rates (MPI_THREAD_ PARALLEL is rare)
= collectives at full machine scale

L)

4

e _ AWRENCE BERKELEY NATIONAL LABORATORY =i

S

' A
frreeeer ‘m

BERKELEY LAB

Summary

e _ AWRENCE BERKELEY NATIONAL LABORATORY =ssssssmniifn

S

' A
fereoeee ﬂ

< Just as a lack of locality makes flop/s seem free today, we've
enumerated a number of hazards that might make bandwidth seem
free at exascale for the key applications we have today.

< Rather than dictating solutions, we have enumerated a list of key
questions that need to be answered via modeling and simulation.

< Using the results from this effort will allow one to identify where the
major roadblocks are on the road to exascale.

e L AWRENCE BERKELEY NATIONAL LABORATORY =—mtiin

S

Acknowledgements

< All authors from Lawrence Berkeley National Laboratory were supported by

the DOE Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231.

e _ AWRENCE BERKELEY NATIONAL LABORATORY =i

S

' A
frreeeer ‘m

BERKELEY LAB

Questions?

e _AWRENCE BERKELEY NATIONAL LABORATORY =asssniiGn

